2022

  1. M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri, C. Bonato, K. D. Jöns, Z. Sun, and B. D. Gerardot, Quantum photonics with layered 2D materials, https://www.nature.com/articles/s42254-021-00408-0  .
  2. A. J. Campbell, M. Brotons-Gisbert, H. Baek, V. Vitale, T. Taniguchi, K. Watanabe, J. Lischner, and B. D. Gerardot, Strongly correlated electronic states in a Fermi sea spatially pinned by a MoSe2/WSe2 moiré superlattice, http://arxiv.org/abs/2202.08879  .
  3. Z. X. Koong, M. Cygorek, E. Scerri, T. S. Santana, S. I. Park, J. D. Song, E. M. Gauger, and B. D. Gerardot, Coherence in cooperative photon emission from indistinguishable quantum emitters, https://www.science.org/doi/10.1126/sciadv.abm8171  .

2021

  1. Christopher L. Morrison, Markus Rambach, Zhe Xian Koong, Francesco Graffitti, Fiona Thorburn, Ajoy K. Kar, Yong Ma, Suk-In Park, Jin Dong Song, Nick G. Stoltz, Dirk Bouwmeester, Alessandro Fedrizzi, and Brian D. Gerardot, A bright source of telecom single photons based on quantum frequency conversion,  https://aip.scitation.org/doi/10.1063/5.0045413  .
  2. Samuel Gyger, Julien Zichi, Lucas Schweickert, Ali W Elshaari, Stephan Steinhauer, Saimon F Covre da Silva, Armando Rastelli, Val Zwiller, Klaus D Jöns, Carlos Errando-Herranz, Reconfigurable photonics with on-chip single-photon detectors,  https://www.nature.com/articles/s41467-021-21624-3  .
  3. Hyeonjun Baek, Mauro Brotons-Gisbert, Aidan Campbell, Valerio Vitale, Johannes Lischner, Kenji Watanabe, Takashi Taniguchi, Brian D. Gerardot, Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions, https://www.nature.com/articles/s41565-021-00970-9  .
  4. Carlos Errando-Herranz, Eva Schöll, Raphaël Picard, Micaela Laini, Samuel Gyger, Ali W. Elshaari, Art Branny, Ulrika Wennberg, Sebastien Barbat, Thibaut Renaud, Marc Sartison, Mauro Brotons-Gisbert, Cristian Bonato, Brian D. Gerardot, Val Zwiller, and Klaus D. Jöns, Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters,  https://pubs.acs.org/doi/full/10.1021/acsphotonics.0c01653  .
  5. Z.X. Koong, E. Scerri, M. Rambach, M. Cygorek, M. Brotons-Gisbert, R. Picard, Y. Ma, S. I. Park, J. D. Song, E. M. Gauger, and B. D. Gerardot, Coherent Dynamics in Quantum Emitters under Dichromatic Excitation,  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.047403  .
  6. M. Brotons-Gisbert, H. Baek, A. Campbell, K. Watanabe, T. Taniguchi, and B. D. Gerardot, Moiré-Trapped Interlayer Trions in a Charge-Tunable WSe 2 / MoSe 2 Heterobilayer, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.031033 .
  7. D. Andres-Penares, M. Brotons-Gisbert, C. Bonato, J. F. Sánchez-Royo, and B. D. Gerardot, Optical and dielectric properties of MoO3 nanosheets for van der Waals heterostructures, https://aip.scitation.org/doi/10.1063/5.0066219  .

2020

  1. H. Baek, M. Brotons-Gisbert, ZX Koong, A. Campbell, M. Rambach, K. Watanabe, T. Takashi, and BD Gerardot,  Highly tunable quantum light from moiré trapped excitonshttps://arxiv.org/ abs / 2001.04305  .
  2. Zhe-Zian Koong, Guillem Ballesteros-Garcia, Raphaël Proux, Dan Dalacu, Philip J. Poole, Brian D. Gerardot,  Multiplexed Single Photons from Deterministically Positioned Nanowire Quantum Dots ,  https://arxiv.org/abs/2005.05361  .
  3. Mauro Brotons-Gisbert, Hyeonjun Baek, Alejandro Molina-Sánchez, Aidan Campbell, Eleanor Scerri, Daniel White, Kenji Watanabe, Takashi Taniguchi, Cristian Bonato and Brian D. Gerardot   Spin - layer locking of interlayer excitons trapped in moiré potentials,   https: / / www.nature.com/articles/s41563-020-0687-7  .
  4. Carlos Errando-Herranz, Eva Schöll, Raphaël Picard, Micaela Laini, Samuel Gyger, Ali W. Elshaari, Art Branny, Ulrika Wennberg, Sebastien Barbat, Thibaut Renaud, Mauro Brotons-Gisbert, Cristian Bonato, Brian D. Gerardot, Val Zwiller, and Klaus D. Jöns,   Resonance fluorescence from waveguide - coupled strain - localized two - dimensional quantum emitters,    https://arxiv.org/abs/2002.07657  .
  5. M. Kremser, M. Brotons-Gisbert, J. Knörzer, J. Gückelhorn, M. Meyer, M. Barbone, AV Stier, BD Gerardot, K. Müller, and JJ Finley,   Discrete interactions between a few interlayer excitons trapped   at a MoSe2 - WSe2 heterointerface,   https://www.nature.com/articles/s41699-020-0141-3  .

2019

  1. M. Brotons-Gisbert, R. Proux, R. Picard, D. Andres-Penares, A. Branny, A. Molina-Sánchez, JF Sánchez-Royo, and BD Gerardot, Out-of-plane orientation of luminescent excitons in two -dimensional indium selenide , Submitted .
  2. J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl, S. Rey, J. Wierzbowski, J. Cerne, K. Müller, E. Mitterreiter, P. Zimmermann, T. Taniguchi, K. Watanabe, U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, JJ Finley, and AW Holleitner, Site-selectively generated photon emitters in monolayer MoS 2 via local helium ion irradiation , Nature Communications 10 , 2755 (2019) .
  3. J. Roenn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides , Nature Communications 10 , 432 (2019) .
  4. M. Brotons-Gisbert, A. Branny, S. Kumar, R. Picard, R. Proux, M. Gray, KS Burch, K. Watanabe, T. Taniguchi, and BD Gerardot, Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir , Nature Nanotechnolog 14, 442-446 (2019) .
  5. D. White, A. Branny, RJ Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and BD Gerardot, Atomically-thin quantum dots integrated with lithium niobate photonic chips , Optical Materials Express 9 , 441 (2019)  .
  6. ZX Koong, D. Scerri, M. Rambach, TS Santana, SI Park, JD Song, EM Gauger, and BD Gerardot,  Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions,  https://journals.aps.org/ prl / abstract / 10.1103 / PhysRevLett.123.167402  .

2018

  1. AW Elshaari, E. Büyüközer, I. Esmaeil Zadeh, T. Lettner, P. Zhao, E. Schöll, S. Gyger, ME Reimer, D. Dalacu, PJ Poole, KD Jöns, and V. Zwiller, Strain-Tunable Quantum Integrated Photonics , Nano Letters 18 , 7969-7976 (2018)  .

A. W. Elshaari, E. Büyüközer, I. Esmaeil Zadeh, T. Lettner, P. Zhao, E. Schöll, S. Gyger, M. E. Reimer, D. Dalacu, P. J. Poole, K. D. Jöns, and V. Zwiller, Strain-Tunable Quantum Integrated Photonics, Nano Letters 18, 7969-7976 (2018).

M. Kremser, M. Brotons-Gisbert, J. Knörzer, J. Gückelhorn, M. Meyer, M. Barbone, A. V. Stier, B. D. Gerardot, K. Müller, and J. J. Finley, Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface, https://www.nature.com/articles/s41699-020-0141-3 


Abstract

Inter-layer excitons (IXs) in hetero-bilayers of transition metal dichalcogenides (TMDs) represent an exciting emergent class of long-lived dipolar composite bosons in an atomically thin, near-ideal two-dimensional (2D) system. The long-range interactions that arise from the spatial separation of electrons and holes can give rise to novel quantum, as well as classical multi-particle correlation effects. Indeed, first indications of exciton condensation have been reported recently. In order to acquire a detailed understanding of the possible many-body effects, the fundamental interactions between individual IXs have to be studied. Here, we trap a tunable number of dipolar IXs (NIX ~ 1–5) within a nanoscale confinement potential induced by placing a MoSe2–WSe2 hetero-bilayer (HBL) onto an array of SiO2 nanopillars. We control the mean occupation of the IX trap via the optical excitation level and observe discrete sharp-line emission from different configurations of interacting IXs. The intensities of these features exhibit characteristic near linear, quadratic, cubic, quartic and quintic power dependencies, which allows us to identify them as different multiparticle configurations with NIX ~ 1–5. We directly measure the hierarchy of dipolar and exchange interactions as NIX increases. The interlayer biexciton (NIX = 2) is found to be an emission doublet that is blue-shifted from the single exciton by ΔE = (8.4 ± 0.6) meV and split by 2J = (1.2 ± 0.5) meV. The blueshift is even more pronounced for triexcitons ((12.4 ± 0.4) meV), quadexcitons ((15.5 ± 0.6) meV) and quintexcitons ((18.2 ± 0.8) meV). These values are shown to be mutually consistent with numerical modelling of dipolar excitons confined to a harmonic trapping potential having a confinement lengthscale in the range 3ℓ≈3 nm. Our results contribute to the understanding of interactions between IXs in TMD hetero-bilayers at the discrete limit of only a few excitations and represent a key step towards exploring quantum correlations between IXs in TMD hetero-bilayers.

ZX Koong, D. Scerri, M. Rambach, TS Santana, SI Park, JD Song, EM Gauger, and BD Gerardot,  Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions,   https://journals.aps.org/ prl / abstract / 10.1103 / PhysRevLett.123.167402 

Mauro Brotons-Gisbert, Hyeonjun Baek, Alejandro Molina-Sánchez, Aidan Campbell, Eleanor Scerri, Daniel White, Kenji Watanabe, Takashi Taniguchi, Cristian Bonato and Brian D. Gerardot  Spin - layer locking of interlayer excitons trapped in moiré potentials,  https: / / www.nature.com/articles/s41563-020-0687-7 


Abstract

Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index and layer index. Furthermore, twisted TMD heterobilayers can form moiré patterns that modulate the electronic band structure according to the atomic registry, leading to spatial confinement of interlayer excitons (IXs). Here we report the observation of spin - layer locking of IXs trapped in moiré potentials formed in a heterostructure of bilayer 2H-MoSe2 and monolayer WSe2. The phenomenon of locked electron spin and layer index leads to two quantum-confined IX species with distinct spin - layer - valley configurations. Furthermore,we observe that the atomic registries of the moiré trapping sites in the three layers are intrinsically locked together due to the 2H-type stacking characteristic of bilayer TMDs. These results identify the layer index as a useful degree of freedom to engineer tunable few-level quantum systems in two-dimensional heterostructures.