2020

  1. H. Baek, M. Brotons-Gisbert, ZX Koong, A. Campbell, M. Rambach, K. Watanabe, T. Takashi, and BD Gerardot,  Highly tunable quantum light from moiré trapped excitonshttps://arxiv.org/ abs / 2001.04305  .
  2. Zhe-Zian Koong, Guillem Ballesteros-Garcia, Raphaël Proux, Dan Dalacu, Philip J. Poole, Brian D. Gerardot,  Multiplexed Single Photons from Deterministically Positioned Nanowire Quantum Dots ,  https://arxiv.org/abs/2005.05361  .
  3. Mauro Brotons-Gisbert, Hyeonjun Baek, Alejandro Molina-Sánchez, Aidan Campbell, Eleanor Scerri, Daniel White, Kenji Watanabe, Takashi Taniguchi, Cristian Bonato and Brian D. Gerardot   Spin - layer locking of interlayer excitons trapped in moiré potentials,   https: / / www.nature.com/articles/s41563-020-0687-7  .
  4. Carlos Errando-Herranz, Eva Schöll, Raphaël Picard, Micaela Laini, Samuel Gyger, Ali W. Elshaari, Art Branny, Ulrika Wennberg, Sebastien Barbat, Thibaut Renaud, Mauro Brotons-Gisbert, Cristian Bonato, Brian D. Gerardot, Val Zwiller, and Klaus D. Jöns,   Resonance fluorescence from waveguide - coupled strain - localized two - dimensional quantum emitters,    https://arxiv.org/abs/2002.07657  .
  5. M. Kremser, M. Brotons-Gisbert, J. Knörzer, J. Gückelhorn, M. Meyer, M. Barbone, AV Stier, BD Gerardot, K. Müller, and JJ Finley,   Discrete interactions between a few interlayer excitons trapped   at a MoSe2 - WSe2 heterointerface,   https://www.nature.com/articles/s41699-020-0141-3 

2019

  1. M. Brotons-Gisbert, R. Proux, R. Picard, D. Andres-Penares, A. Branny, A. Molina-Sánchez, JF Sánchez-Royo, and BD Gerardot, Out-of-plane orientation of luminescent excitons in two -dimensional indium selenide , Submitted .
  2. J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl, S. Rey, J. Wierzbowski, J. Cerne, K. Müller, E. Mitterreiter, P. Zimmermann, T. Taniguchi, K. Watanabe, U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, JJ Finley, and AW Holleitner, Site-selectively generated photon emitters in monolayer MoS 2 via local helium ion irradiation , Nature Communications 10 , 2755 (2019) .
  3. J. Roenn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides , Nature Communications 10 , 432 (2019) .
  4. M. Brotons-Gisbert, A. Branny, S. Kumar, R. Picard, R. Proux, M. Gray, KS Burch, K. Watanabe, T. Taniguchi, and BD Gerardot, Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir , Nature Nanotechnolog 14, 442-446 (2019) .
  5. D. White, A. Branny, RJ Chapman, R. Picard, M. Brotons-Gisbert, A. Boes, A. Peruzzo, C. Bonato, and BD Gerardot, Atomically-thin quantum dots integrated with lithium niobate photonic chips , Optical Materials Express 9 , 441 (2019)  .
  6. ZX Koong, D. Scerri, M. Rambach, TS Santana, SI Park, JD Song, EM Gauger, and BD Gerardot,  Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions,  https://journals.aps.org/ prl / abstract / 10.1103 / PhysRevLett.123.167402  .

2018

  1. AW Elshaari, E. Büyüközer, I. Esmaeil Zadeh, T. Lettner, P. Zhao, E. Schöll, S. Gyger, ME Reimer, D. Dalacu, PJ Poole, KD Jöns, and V. Zwiller, Strain-Tunable Quantum Integrated Photonics , Nano Letters 18 , 7969-7976 (2018)  .

A. W. Elshaari, E. Büyüközer, I. Esmaeil Zadeh, T. Lettner, P. Zhao, E. Schöll, S. Gyger, M. E. Reimer, D. Dalacu, P. J. Poole, K. D. Jöns, and V. Zwiller, Strain-Tunable Quantum Integrated Photonics, Nano Letters 18, 7969-7976 (2018).

M. Kremser, M. Brotons-Gisbert, J. Knörzer, J. Gückelhorn, M. Meyer, M. Barbone, A. V. Stier, B. D. Gerardot, K. Müller, and J. J. Finley, Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface, https://www.nature.com/articles/s41699-020-0141-3 


Abstract

Inter-layer excitons (IXs) in hetero-bilayers of transition metal dichalcogenides (TMDs) represent an exciting emergent class of long-lived dipolar composite bosons in an atomically thin, near-ideal two-dimensional (2D) system. The long-range interactions that arise from the spatial separation of electrons and holes can give rise to novel quantum, as well as classical multi-particle correlation effects. Indeed, first indications of exciton condensation have been reported recently. In order to acquire a detailed understanding of the possible many-body effects, the fundamental interactions between individual IXs have to be studied. Here, we trap a tunable number of dipolar IXs (NIX ~ 1–5) within a nanoscale confinement potential induced by placing a MoSe2–WSe2 hetero-bilayer (HBL) onto an array of SiO2 nanopillars. We control the mean occupation of the IX trap via the optical excitation level and observe discrete sharp-line emission from different configurations of interacting IXs. The intensities of these features exhibit characteristic near linear, quadratic, cubic, quartic and quintic power dependencies, which allows us to identify them as different multiparticle configurations with NIX ~ 1–5. We directly measure the hierarchy of dipolar and exchange interactions as NIX increases. The interlayer biexciton (NIX = 2) is found to be an emission doublet that is blue-shifted from the single exciton by ΔE = (8.4 ± 0.6) meV and split by 2J = (1.2 ± 0.5) meV. The blueshift is even more pronounced for triexcitons ((12.4 ± 0.4) meV), quadexcitons ((15.5 ± 0.6) meV) and quintexcitons ((18.2 ± 0.8) meV). These values are shown to be mutually consistent with numerical modelling of dipolar excitons confined to a harmonic trapping potential having a confinement lengthscale in the range 3ℓ≈3 nm. Our results contribute to the understanding of interactions between IXs in TMD hetero-bilayers at the discrete limit of only a few excitations and represent a key step towards exploring quantum correlations between IXs in TMD hetero-bilayers.

ZX Koong, D. Scerri, M. Rambach, TS Santana, SI Park, JD Song, EM Gauger, and BD Gerardot,  Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions,   https://journals.aps.org/ prl / abstract / 10.1103 / PhysRevLett.123.167402 

Carlos Errando-Herranz, Eva Schöll, Raphaël Picard, Micaela Laini, Samuel Gyger, Ali W. Elshaari, Art Branny, Ulrika Wennberg, Sebastien Barbat, Thibaut Renaud, Mauro Brotons-Gisbert, Cristian Bonato, Brian D. Gerardot, Val Zwiller, and Klaus D. Jöns, Resonance fluorescence from waveguide–coupled strain–localized two–dimensional quantum emitters,  https://arxiv.org/abs/2002.07657


Abstract

Efficient on–chip integration of single–photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid–state emitters are emerging as near–optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost–inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible. A promising scalable platform is based on two–dimensional (2D) semiconductors. However, resonant excitation and single–photon emission of 1 arXiv:2002.07657v3 [physics.app-ph] 15 May 2020 waveguide–coupled 2D emitters have proven to be elusive. Here, we show a scalable approach using a silicon nitride photonic waveguide to simultaneously strain–localize single–photon emitters from a tungsten diselenide (WSe2 ) monolayer and to couple them into a waveguide mode. We demonstrate the guiding of single photons in the photonic circuit by measuring second–order autocorrelation of g(2)(0) = 0.150 ± 0.093 and perform on–chip resonant excitation yielding a g(2)(0) = 0.377±0.081. Our results are an important step to enable coherent control of quantum states and multiplexing of high–quality single photons in a scalable photonic quantum circuit.