Hyeonjun Baek, Mauro Brotons-Gisbert, Aidan Campbell, Kenji Watanabe, Takashi Taniguchi, Brian D. Gerardot, Optical read-out of Coulomb staircases in a moiré superlattice via trapped interlayer trions, https://arxiv.org/abs/2102.01358


Abstract

Moiré patterns with a superlattice potential can be formed by vertically stacking two layered materials with a relative twist or lattice constant mismatch. The moiré superlattice can generate flat bands that result in new correlated insulating, superconducting, and topological states. Strong electron correlations, tunable by the fractional filling, have been observed in both graphene and transition metal dichalcogenide (TMD) based systems. In addition, in TMD based systems, the moiré potential landscape can trap interlayer excitons (IX) at specific atomic registries. Here we report that spatially isolated trapped IX in a molybdenum diselenide/tungsten diselenide heterobilayer device provide a sensitive optical probe of carrier filling in their immediate environment. By mapping the spatial positions of individual trapped IX, we are able to spectrally track the emitters as the moiré lattice is filled with excess carriers. Upon initial doping of the heterobilayer, neutral trapped IX form charged IX (IX trions) uniformly with a binding energy of ~7 meV. Upon further doping, the empty superlattice sites sequentially fill, creating a Coulomb staircase: stepwise changes in the IX trion emission energy due to Coulomb interactions with carriers at nearest neighbour moiré sites. This non-invasive, highly local technique can complement transport and non-local optical sensing techniques to characterise Coulomb interaction energies, visualise charge correlated states, or probe local disorder in a moiré superlattice.

Z. X. Koong, E. Scerri, M. Rambach, M. Cygorek, M. Brotons-Gisbert, R. Picard, Y. Ma, S. I. Park, J. D. Song, E. M. Gauger, and B. D. Gerardot, Coherent Dynamics in Quantum Emitters under Dichromatic Excitation, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.047403 

Abstract

We characterize the coherent dynamics of a two-level quantum emitter driven by a pair of symmetrically detuned phase-locked pulses. The promise of dichromatic excitation is to spectrally isolate the excitation laser from the quantum emission, enabling background-free photon extraction from the emitter. While excitation is not possible without spectral overlap between the exciting pulse and the quantum emitter transition for ideal two-level systems due to cancellation of the accumulated pulse area, we find that any additional interactions that interfere with cancellation of the accumulated pulse area may lead to a finite stationary population inversion. Our spectroscopic results of a solid-state two-level system show that, while coupling to lattice vibrations helps to improve the inversion efficiency up to 50% under symmetric driving, coherent population control and a larger amount of inversion are possible using asymmetric dichromatic excitation, which we achieve by adjusting the ratio of the intensities between the red- and blue-detuned pulses. Our measured results, supported by simulations using a real-time path-integral method, offer a new perspective toward realizing efficient, background-free photon generation and extraction.